Glucose-6-phosphate-dehydrogenase-deficient erythrocytes have an impaired shape recovery mechanism.
نویسندگان
چکیده
In the human erythrocyte, the maintenance of the biconcave disc shape is important for cell viability as well as cell function. Previous studies have indicated the involvement of the hexose monophosphate shunt in the recovery of discoid shape after perturbation of echinocytic agents. In glucose-6-phosphate-dehydrogenase-deficient (Gd-) erythrocytes, the shunt activity is significantly decreased; thus, it might be expected that the shape recovery rate of Gd- erythrocytes would be decreased. We show here that shape recovery rates in the presence of the shunt stimulator methylene blue are as much as fivefold lower in Gd- erythrocytes. We also show that the protease inhibitor, N-alpha-tosyl-1-phenylalanine-chloromethyl ketone, has no effect on shape recovery in Gd-, whereas it increases normal cell shape recovery rates by 10-30-fold at 50 microM and causes cupping at 200 microM (see companion article by Alhanaty et al.). These changes are not due to reticulocytosis, as other hemolytic disorders do not show such changes. Further, both chronic hemolyzing Gd and A Gd variants show similar abnormal shape recovery behavior, whereas the extent of hemolysis is quite different between variants. Thus, the activity of the hexose monophosphate shunt appears to have a dramatic effect on the rate of reversal of echinocytosis. The lack of shunt activity of Gd cells would necessarily impair their ability to recover normal shape after perturbation.
منابع مشابه
Protective Effect of Quercetin on Oxidative Stress in Glucose-6-Phosphate Dehydrogenase-Deficient Erythrocytes in Vitro
Glucose-6-phosphate dehydrogenase (G6PD) deficient subjects are vulnerable to oxidative stress. Quercetin, a flavonoids, has been employed as a potent oxygen-free radical scavenger in order to assess the protective effects of quercetin against H2O2-induced oxidative damage in G6PD-deficient and normal human erythrocytes. Erythrocytes of G6PD-deficient (n = 10) and normal (n = 10) subjects were ...
متن کاملProtective Effect of Quercetin on Oxidative Stress in Glucose-6-Phosphate Dehydrogenase-Deficient Erythrocytes in Vitro
Glucose-6-phosphate dehydrogenase (G6PD) deficient subjects are vulnerable to oxidative stress. Quercetin, a flavonoids, has been employed as a potent oxygen-free radical scavenger in order to assess the protective effects of quercetin against H2O2-induced oxidative damage in G6PD-deficient and normal human erythrocytes. Erythrocytes of G6PD-deficient (n = 10) and normal (n = 10) subjects were ...
متن کاملMolecular Characterization of Cosenza Mutation among Patients with Glucose-6-Phosphate Dehydrogenase Deficiency in Khuzestan Province, Southwest Iran
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common hereditary enzymatic disorders in human, increases the vulnerability of erythrocytes to oxidative stress. It is also characterized by remarkable molecular and biochemical heterogeneity. According to previous investigations, G6PD Cosenza (G1376C) is a common G6PD mutation in some parts of Iran. Therefore in the present...
متن کاملMOLECULAR IDENTIFICATION OF THE MOST PREVALENT MUTATION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) GENE IN DEFICIENT PATIENTS IN GILAN PROVINCE
Glucose-6-Phosphate Dehydrogenase (G6PD) is a cytosolic enzyme which its main function is to produce NADPH in the red blood cells by controlling the step from Glucose-6-Phosphate to 6-Phospho gluconate in the pentose phosphate pathway. G6PD deficiency is the most common X-chromosome linked hereditary enzymopathy in the world, that result in reduced enzyme activity and more than 125 different mu...
متن کاملMolecular Identification of the Most Prevalent Mutation of Glucose-6-Phosphate Dehydrogenase Gene in Deficient Patients in Sistan and Balochestan Province of Iran
Glucose-6-phosphate dehydrogenase (G6PD) in humans is an X-chromosome-linked disorder and housekeeping enzyme, vital for the survival of every cell. It catalyses the oxidation of glucose-6-phosphate to 6-phospho gluconate in the first committed step of the pentose phosphate pathway, which provides cells with pentoses and reducing power in the form of NADPH. NADPH is required to protect the cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 63 5 شماره
صفحات -
تاریخ انتشار 1984